
1

SCHOOL OF ENGINEERING AND

ADVANCED TECHNOLOGY

Engineering Project
Submitted as part requirement for B.Eng (Hons).

De-tumbling System Development of KiwiSAT

Binglun Li (Larry)

2013

SUPERVISORS

a. Dr. Johan Potgieter
b. Dr. Jonathan Henderson

2

Abstract
This project addresses the design and development of a module for the

Attitude Determination and Control (ADAC) system of a Low Earth Orbit

satellite, KiwiSAT. The module is called “De-Tumble Control System” and has

the responsibility of automatically slowing KiwiSAT should it be released from

the launch vehicle with abnormally fast rotation.

3

Table of Contents

Abstract ... 2

Table of Contents ... 3

Introduction ... 4

Project Background .. 5

Literature Review ... 16

Project Overview ... 19

Stage 1 – Moments of Inertia Measurement ... 20

Stage 2 – Sensing Rotation ... 31

Stage 3 – Control System Development ... 37

Stage 4 – Simulation .. 41

Stage 5 – Simulation Results Analysis ... 43

Stage 6 – Translate Simulated Control System to C .. 44

Conclusion ... 45

Reference .. 46

Appendix 1 – Images .. 47

Appendix 2 – Simulation Software Code .. 55

4

Introduction
The De-Tumble Control System to be developed, has to satisfy a requirement

of being able to slow a fast rotating satellite’s motion of 7 RPM to very low, 0.1

RPM.

In order to achieve the aim and satisfy such a requirement, some objectives

are set up to be achieved, which would also be called as different stages of the

project development.

 3 Principle Moments of Inertia Measurement

 Control System Concepts Development

 Control System Model

 Control System Simulation

 Translate Simulated Control System to C

After these stages of development, a fully functioning de-tumble control

system is expected to be ready for uploading to the actual satellite and used

for its mission.

Moreover, the stages mentioned above structure the development of the de-

tumble control system in a very manageable manner, which is also how the

following report addresses and introduces the details of the development

process.

5

Project Background

The KiwiSAT Project

The KiwiSAT project is undertaken and directed by The Radio Amateur Satellite

Corporation of New Zealand (AMSAT- ZL). It is dedicated to design, develop,

make, test and operate of the first satellite for New Zealand. It will be a great

achievement for New Zealand, since there are few countries other than the US,

Russia, the UK, China and Japan capable of building satellites themselves. The

satellite is developed and built for communication and science research

purposes and the completed model is going to be launched by the Space

Launch System, DNEPR, from Yasne in Russia.

KiwiSAT is classified as a Microsat Class amateur communication satellite. After

KiwiSAT successfully enters the pre-set orbit, it will become a part of the

Orbiting Satellite Carrying Amateur Radio (OSCAR) constellation, with a unique

destination, which is allocated by AMSAT-International. Moreover, KiwiSAT

would operate under the radio regulations from International

Telecommunication Union (ITU) and within the Amateur Satellite Service.

(Kennedy, 2011)

In addition, KiwiSAT will be freely open for use by the world-wide Amateur

Satellite Community. Members around the world are welcome to use KiwiSAT

for communication. Data measured by the on board science package will also

be made available on the AMSAT-ZL website or can be directly downloaded

from the satellite with the proper receive gear. (Kennedy, 2011)

Figure 1 – Animated KiwiSAT Model

6

The Stakeholders

As mentioned before, KiwiSAT is a project that is undertaken and directed by

AMSAT-ZL. Therefore, AMSAT-ZL is the major stakeholder of the project.

Moreover, a KiwiSAT Project Team has been formed, with the members from

AMSAT-ZL and some other organizations, to conduct the actual research and

development work of the satellite. In addition, the KiwiSAT project also has

many sponsors from different fields, such as Massey University, AMSAT-

International, Fisher and Paykel Healthcare, EADS Astrium and many more.

(AMSAT-ZL, 2006)

AMSAT-International

AMSAT is an acronym for Radio Amateur Satellite Corporation. It was founded

in 1969 in the US as an educational organization, with the aim of encouraging

the amateur radio enthusiasts to conduct more space research. It is a nonprofit

making organization of persons who design, build, launch and use small

satellites for their own interest and satisfaction. In addition, AMSAT helps to

design, build, arrange launches and operate satellites that are carrying

amateur radio payloads, such as OSCAR serious of satellites.

Over the years, AMSAT has grown and there are currently 22 countries that

have local groups that make up AMSAT-International community. A large

portion of these 22 affiliated national organizations have built and launched

their own amateur satellite to date. The New Zealand branch of AMSAT is

known to be AMSAT-ZL, which has members actively contributing to the global

community and the development of new amateur satellite project, such as

KiwiSAT.

AMSAT-ZL

As just mentioned, AMSAT-ZL is the New Zealand branch of the AMSAT-

International family, which is also the main stakeholder of the KiwiSAT project.

It organizes funds, man-power and some other resources for the project.

KiwiSAT project team is one of the examples – it organizes volunteer

7

development and electronics engineers, such as Austin Green, Clayton

Gumbrell, Terry Osborn, who have contributed significantly to the design,

construction and testing of the electronics and control software of the satellite;

Fred Kennedy, the project manager and the main driving force of the project,

who spent a lot of time and effort in ensuring the success of the KiwiSAT

project; Dr. Jon Henderson, Attitude Determination and Control developer,

who came up with simple and sophisticated solutions to the orientation

control system of the satellite and Ian Ashley, who contributed to the testing

and operation of the satellite. All of them have made significant contributions

to the KiwiSAT project and should be highly regarded accordingly.

Massey University

Massey University supports the development of the satellite by providing

facilities, students and some other resources. For example, computers

hardware and software are provided for the KiwiSAT Project Team for

development work; a clean-room is provided for the actual satellite’s

construction and testing; many students are glad to be invited into the KiwiSAT

team to work on various of projects, such as calibrating sensors or the

orientation control system development.

Figure 2 – Astrium’s Logo

EADS Astrium

Astrium is an aerospace subsidiary of European Aeronautic Defense and Space

Company (EADS), which provides civil and military space system and services. It

is ranked as the 3rd largest surveillance satellite producer in the world.

Moreover, Astrium expressed their interests in using KiwiSAT for some science

research that related to global warming. It employs an extra 435 MHz UHF

beacon to the current satellite’s communication package, which will be used to

test the advantages of using P band radar for biomass and ice thickness

measurement. (Kennedy, 2011)

8

Sponsors from Industry

There are many companies across many different fields that support KiwiSAT

project development progress, for instance, Fisher and Paykel Healthcare,

which helps to conduct the vibration test of the satellite. Others are shown

below. (AMSAT-ZL, 2006)

Figure 3 – Sponsors for the KiwiSAT Project

9

The Satellite

KiwiSAT belongs to “Microsat” class, due to its relatively small size. It is an

approximated cube object, 240x240x280mm in size and weighs about 12 kg.

The satellite is now in its final stage of development – all the electronics are

assembled in place, sensors are calibrated and only waiting for the completion

of the control system development.

The satellite will be launched to a Low Earth Orbit, which is approximately 800

to 900 km above the Earth’s surface and expected to take about 100 minutes

for the satellite to complete each orbit (travelling in 30,000km/h). Moreover,

the satellite will spend about 80% of its time viewing the sun and constantly

pass over the North and South poles, as the pre-set orbit is a sun-synchronous

orbit, in order to maximize the power generated from the solar cells. (Kennedy,

2011)

In addition, once the satellite is in the orbit, it will become part of the OSCAR

(Orbiting Satellite Carrying Amateur Radio) constellation and provide radio

services to the worldwide amateur satellite community as its primary

functionality. (AMSAT-ZL, 2013)

The satellite is physically built upon 6 aluminum trays that stack on top of

another; each of them has been precisely machined and holds the electronics

for specific functions or services.

Figure 4 – Table of KiwiSAT Structure

10

Figure 5 – IHU Tray

The image above is an example for one of the trays, it holds the electronics for

the House Keeping unit; more examples will be shown in the appendix.

The exterior of the satellite is covered with solar cells, whose generated

electricity will be managed by the Battery Control Regulator and eventually

stored in the Battery. As mentioned, the primary function of the satellite is to

provide communication services; therefore, the satellite has transmitter and

receiver modules built in with antenna around its exterior. These are detailed

in the appendix.

11

Figure 6 – KiwiSAT Complete Model

Besides communications, the satellite also has a small science package which is

designed for the following 2 functions:

1. Ionospheric Characteristics Measurements

2. Attitude Determination and Control Experiments (ADAC)

Ionospheric Characteristics Measurements

Equipment for this experiment was requested by Astrium and uses the

435MHz beacon from KiwiSAT to conduct precise measurements of the

ionosphere. Such an experiment would test the advantages of using P band

radar for biomass and ice thickness measurement, which is closely related to

the global warming issue. (Kennedy, 2011)

12

Attitude Determination and Control (ADAC)

The ADAC system’s core duty is to determine the satellite’s attitude, based on

the readings from various sensors on board and activate the onboard coils to

apply control actions accordingly. Moreover, there are 2 modules inside the

ADAC system.

 De-tumble System

 Stable State Orientation Control System

Firstly, the De-tumble System is designed to be used just after KiwiSAT is

released from the launch vehicle, in order to stabilize a possibly fast rotating

and unstable motion of the satellite. The following report will describe the

development of this system in details.

Secondly, when the satellite is in a stable condition, then the second

orientation control system would kick in, to do accurate attitude control. Such

an orientation control system is very important to the satellite, since it can:

a) prevent one side of the satellite over expose to the sun, which might

cause overheating and damage to the solar cells;

b) increase power generation efficiency from the solar cells – actively

control and maximize the amount of cells expose to the sun;

c) conduct science research by accurately pointing the satellite to a

certain direction and then take measurements from the sensors.

The development of the second orientation control system is another

complete project on its own and would not be discussed in the following

report.

To achieve the ADAC functionality the science package of KiwiSAT includes a

list of sensors, such as:

 1 three-axis Magnetometer

 2 Sun Sensors

 2 pairs of horizon sensors

 CMOS camera

 GPS receiver

 Solar cells

13

Figure 7 – Sensors and Actuators Onboard

For orientation control, the satellite employs 3 coils – 1 in each axis. All of

those coils are identical to each other; they size about 200x200mm, draw 0.5A

and generate 1.554 Am2 when they are powered.

14

Figure 8 – Onboard Magnetic Coils

When a coil is energized, it will generate a magnetic moment which will react

(attract/repel) with the Earth’s magnetic field and yield a torque that is able to

change the motion of the satellite. (See Literature Review for more details)

Launch System

Due to the exterior layout of KiwiSAT the DNEPR launch vehicle from Russia is

chosen to launch the satellite. Their release system is a gentle way of launching

satellites.

Figure 9 – DNEPR Logo

15

As shown in the image, when the third stage of the rocket approaches to the

right position, it would actually turn around and gently release (“dropping”)

the satellites while moving forward, which is ideal for KiwiSAT and different

from the common “kick in the bottom” method that NASA and European Space

Agency use. (Kosmotras , 2001)

Figure 10 – DNEPR Launch System

16

Literature Review

Magnetometer

There is a 3-axis prescient magnetometer installed in the satellite.

Magnetometer returns readings that describe the Earth magnetic field’s

direction and magnitude, respect to the magnetometer itself. (AMSAT-ZL, 2013)

Therefore, if the Earth magnetic field is stationary and the satellite is rotating,

then what the magnetometer “sees” is actually the satellite is stationary and

the Earth’s field is rotating around it with reversed direction.

Theory of Rotation

As the fundamental equation of rigid body dynamics indicated, attitude

dynamics relates the time derivative of the angular momentum vector, dL/dt,

to the applied torque, T.

Where L is the angular momentum vector along the spacecraft-fixed axes; ω is

the instantaneous velocity vector; I is the moments of inertia and T is the

applied torque, defined below.

Moreover, the force, F, on the ith mass consists of 2 parts – externally applied

force and an internal force exerted by the other masses.

In addition, by substituting the classic momentum equation,

the rigid body dynamics equation could be re-written as,

17

which, could be further simplified to

These are the Euler Equations and it is important to note that T & are

relative to the satellite axes. (Wertz, 1978)

Current State of Art

There are many methods to actively control the spacecraft attitude

concurrently. The most common techniques are mass expulsion; momentum

wheels and electromagnetic coils. (Wertz, 1978)

Mass Expulsion System

Mass expulsion control systems, used for attitude control, can be normally

found as gas and ion thrusters.

They are simple to operate, efficient in the execution for reorientation and not

limited to the space environment. However, they are expensive, require

complicated hardware and engine and have limited lifetime by the amount of

fuel onboard. Moreover, they can also cause orbit changes when a

reorientation is in execution; therefore, thrusters are normally fired in pairs to

minimize the side effect of translation motion. (Tate, 1978)

18

Momentum Wheels

Momentum wheels are used to absorb disturbance torques. They are normally

installed on 1, 2 and 3 axes to control the pitch, yaw and roll of the spacecraft.

The operation of the momentum wheel is complex and relies on the

interaction of mechanical parts, which have limited lifespan. Moreover,

secondary active attitude control system is normally required to maintain the

wheels and spacecraft momentum or even used to restore the momentum

wheels back to its nominal operation condition. (Tate, 1978)

Momentum wheels system maintains and controls the attitude, by exchanging

the momentum between the spacecraft and the wheels. Externally applied

torque will be absorbed by the wheels to maintain the spacecraft attitude; on

the other hand, controlling the attitude of the spacecraft can be achieved by

changing the wheels’ momentum.

Magnetic Coils

Magnetic coils control system can be used to control the satellite orientation

as far as the orbit altitude is less than 35,000 km. Such a system is relatively

lightweight and requires no moving parts or complex hardware. However, it

requires relatively large amount of power; provides slow reorientation and its

operation depends on the Earth’s field configuration. (Tate, 1978)

There are 3 types of magnetic torque system being used – permanent magnets,

“air”-core coils and iron-core coils. Permanent magnets are the heaviest type

and are used only for stabilization. “Air”-core and iron-core coil systems are

used for both stabilization and reorientation.

Comment

Due to many limitations of the satellite, such as size, budget, durability, etc.,

the “air”-core coils system is chosen to perform the orientation control for

KiwiSAT. Moreover, the de-tumble controller, that is about to be developed, is

also going to be built upon such an actuating system with some other onboard

sensors.

19

Magnetic-torque

There are 3 magnetic coils, 1 in each axis, in the satellite. As just mentioned,

when they are energized, magnetic moments will be generated, which

interacts (repel/attract) with the Earth magnetic field and resulting a torque

that could change the motion of the satellite.

It is important to note that only the magnetic dipoles that are in the rotational

plane are able to control the rotational speed; otherwise the magnetic

moments would contribute to making side effects and adding speed to other

axes. (Wertz, 1978)

Project Overview
Despite the Kosmotras DNEPR launch company states that the released

satellites will be in a stable and slow rotating motion – about 0.5 degree/sec

for yaw, pitch and roll; that is not always the case from experiences. In fact, it

is suggested that the satellite may be rotating in a relatively high speed – from

2 and even up to 7RPM. If that is the case, it would be very hard to command

the satellite to do any desired task, such as reorienting the satellite to a certain

direction to take photos or conduct experiments, etc. – such a state is

considered to be an unstable.

Therefore, a de-tumble control system has to be in place to automatically

stabilize the post-released KiwiSAT. The control system would get readings

from sensor(s) and actuate magnetic coils; and it has to be so simple that even

the weak onboard CPU can cope with. Besides, it still needs to perform well

and be able to slow a high rotation speed of up to 7 RPM down to very low, 0.1

RPM.

20

Stage 1 – Moments of Inertia Measurement

Reasons from Rotational Theory

As the Euler Equations of Dynamic Motion pointed out, if a torque is applied to

an object and want to find out the resulting angular velocity, then the

moments of inertia of the object are required. (Wertz, 1978)

Since the actual satellite is not a solid object with unevenly distributed weight,

its moments of inertia will be different to each other and cannot be obtained

just by calculation from equations. Therefore, some kinds of test method have

to be developed, in order to find out the actual moment of inertia of the

satellite in 3 different axes.

Testing Method

“Moments of Inertia” simply means the inertia, in the rotational motion

domain in 3 different axes of the object. Therefore, they should be measured

while the object is rotating. As a result, the testing object is turned into a

torsional pendulum for the experiment.

Afterwards, diagrams of the torsional pendulum system are analyzed the

mathematical models of the system are obtained.

21

Figure 11 – Torsional Pendulum

The diagram above shows the construction of a simple torsional pendulum – a

cube object is hanged from the ceiling using wires with the same length, l.

After the object is completely settled and stationary relative to the supporting

frame, which is called initial position, the object is rotated with a horizontal

offset angle θ/2. After it is released from the offset position, the object will

rotate/oscillate around its initial position with a range of θ degree.

As the classic equation of pendulum indicated, the time of each period is

controlled by

a) the moment of inertial of the object, I, and

b) the torsional constant, K, of the test equipment setting, which is

dependent on the wire length, L, and the object size, r, etc..

Therefore, In order to find out the moment of inertia using the classic

pendulum equation, time for each period (T) and the torsional constant (k) are

22

required. On the other hand, time for each period (T) could simply be

measured in the experiment by using a stop-watch; the torsional constancy,

however, is really unknown.

Finding out Torsional Constancy

Therefore, more analyses are undertaken to calculate the torsional constancy

of the test system.

Figure 12 – A Corner of the Torsional Pendulum

Firstly, the view is zoomed into only 1 of the 4 supporting points on the object,

to analysis the force that the wire is undertaken (T). It contains 2 force

components:

a) firstly, a vertical upward component that overcomes the gravity (mg/4)

b) secondly, a horizontal component (F) always points to the initial

position.

The magnitude of the horizontal component F could be calculated from the

basic trigonometry equation, with the angle α, offset angle between the initial

wire position and the current wire position:

23

Secondly, the resulting moment (torque) due to rotation could be obtained by

analyzing the top view.

Figure 13 – Top View of the Torsional Pendulum

All 4 of the supporting points experience the same horizontal force F, which

had been discussed before, with distance, d, away from the center point.

Therefore, the resulting moment could be calculated accordingly.

In addition, assuming the angle α is very small, therefore:

24

Therefore the moment could be further simplified to:

On the other hand, α could be linked to θ by another analysis:

Lastly, after substituting α into the moment equation, a model equation could

be obtained:

Such an equation simply means that the resulting moment is proportional to

the rotational angle θ, where the torsional constancy (K) will be:

25

Rearranging the Classic Pendulum Equation

Armed with a known torsional constant (k) and a measurable period time (T),

moment of inertia of the object (I) could be calculated by rearranging the

classic pendulum equation.

Moreover, the “object”, that is actually being tested, consists of two parts –

firstly, the object that is being measured and, secondly, the supporting

material. Both of the testing object and the supporting material have mass and

moment of inertia, therefore the equation above could be further simplified to:

Where “s” stands for supporting material and “o” stands for the object that is

being tested.

Therefore, the moment of inertia could be described as:

Where

Lastly, the mathematical model could be further simplified to a linear equation

26

By grouping

It is a very impressive mathematical model – despite all of the complex

operation, such as square root and square, the moment of inertia could be

calculated by using just 1 simple linear equation.

Construction of the Testing Stand

As mentioned before, moments of inertia of the satellite will be measured by

turning the satellite into a torsional pendulum. Therefore, a testing stand and

some supporting materials have to be designed and built to hang them for the

experiment.

Figure 14 – Testing Stand Designed in SolidWorks

27

As shown in the diagram, the stand is designed in a pyramid shape and it is

about 2.8m tall from the ground. It has a very wide base of about 1.9m and a

long side section of 1.3m to gain extra stability as well as to prevent the

collisions between the antennas on KiwiSAT and the body of the stand.

Moreover, the stands would hang the satellite 2.5 mete down from the

supporting material on the top, which makes the angle α small, so that tan(α)

could be approximated to α.

Afterwards, timber is processed into the right lengths and shapes and

assembled together with wood screws. Lastly, the testing stand is constructed.

As shown in the image below, the stand looks about twice as high as an adult.

Figure 15 – Fully Constructed Testing Stand

28

Calibrations and Experiments

As the mathematical model obtained from theory indicated, the moment of

inertia of a particular object is in linear relationship with a variable “Xo”, where

“C” is the slope and “Is” is the offset.

The slope “C” is depended upon the testing equipment, such as, the number of

supporting points, the length of wire, the distance between each supporting

points, etc. On the other hand, the offset “Is” is the moment of inertia of the

supporting material. Therefore, the slope “C” and offset “Is” should stay

constant, no matter what object is being tested, as far as the testing

equipment remains the same. Consequently, the data points plotted on the Xo

and Io diagram should fit on a straight line.

In another word, the slope “C” and the offset “Is” could be calibrated (or

measured) by using the system to test objects with known “Io” and “Xo”.

Calibration

Three objects are purposely made for calibrating the testing equipment and

calculating the slope “C” and offset “Is”:

a) a big wooden cube, sizes about 300x300x340mm and weights about

12kg;

b) a small piece of timber panel, size about 250x250x40mm and weighs

about 1.5 kg;

c) a piece of long timber, sizes about 650x120x40mm and weighs about

1.7kg.

Firstly, the big wooden cube is tested. It has evenly distributed mass and

regulator shape; therefore its moment of inertia could be calculated by using

another classic equation.

29

Secondly, the variable in the equations, Xo, is shown below, combining the

square of the time of each period (T), which is measured by using a stopwatch

in the experiment, and the sum of mass of the testing object (Mo) and

supporting material (Ms).

Therefore, “Io” and “Xo” of the big cube are obtained after these 2 steps.

Following the same procedure, the small timber panel and the long timber

beam are tested individually.

After all, 3 sets of data are obtained, which are “Io” and “Xo” values of each

individual calibration object.

Results Analysis

Those 3 sets of data are plotted in a graph, with variable “Xo” on the x axis and

the “Io” on the y axis.

Figure 16 – Moment of Inertia Calibration Results

y = 0.0003x - 0.0113

-0.03

0

0.03

0.06

0.09

0.12

0.15

0.18

0 100 200 300 400 500 600 700

I o

Xo

Moment Inertia kg-m2

Measured

Calibrate

Check

30

As shown in the graph, all of those 3 points are highly correlated to each other

in a linear pattern, which is proven by an extremely high R-Value, 0.999943.

This is very impressive and suggests that the mathematical model obtained

from the theory is correct; secondly, the slope “C” and the offset “Is” are

calculated from the line to be 0.0003 and 0.0113 respectively.

Summary

In summary, an easy-to-use moment of inertia testing system is fully

developed with proper theoretical model. The design has been built and

calibrated for the slope “C” and offset “Is”. Now the testing equipment is ready

to be used to measure the moments of inertia of the actual satellite.

31

Stage 2 – Sensing Rotation

Rotation Measurement Concepts

In order to control (or stabilize) the post-released satellite rotation, as stated in

the project aim, it is essential to be able to sense how the satellite rotate –

being able to know how fast the satellite is spinning in what direction.

Consequently, members in the KiwiSAT Project Team stared brainstorming

different concepts about how to use the onboard sensors to measure the

rotation.

Concept 1 – Absolute Certain Measurement

This concept would measure the rotation of KiwiSAT by constantly trying to

calculate the exact orientation of the satellite respective to the Earth. The

difference between any 2 attitude-measurements/calculations is caused by the

rotation; therefore, the rotational axis, speed and direction could be found out

accordingly.

It would, firstly, try to take readings from the magnetometer and both of the

sun sensors. Secondly, based on the readings, it calculates the exact

orientation of KiwiSAT. Lastly, it calculates the differences between any 2

calculated results to obtain the information of the rotation.

Comment

Although this method seems very logical, it is very unpractical for this

application.

Firstly, the exactly orientation of the satellite could be calculated, only when

both magnetometer and either of the sun sensor are able to return readings.

However, that is not always the case, since there is a significant portion of

opportunity that neither of the sun sensors is able to “see” the sun and

resulting insufficient reading for the controller to calculate the exact attitude

of the satellite. In another word, such a measurement system relies on

windows of opportunity that either sun sensors faces towards the sun, whose

32

sizes are absolutely uncontrollable. Secondly, even though the control system

is able to get both of the magnetometer and sun sensor readings, it requires

very complicated mathematical models to calculate the actual satellite attitude

respect to the Earth, which requires far more computational power and

memory than the actual on board computer has. By the time it finishes the first

attitude calculation, the fast spinning satellite might have already completed a

few rotational cycles, which means it would have big aliasing issue.

For all of these mentioned disadvantages, such a measurement method is

abandoned.

Concept 2 – Relative Measurement

In this concept, reading form only one sensor, magnetometer, is required to

measure the rotation of the satellite. It assumes the Earth magnetic field is

constant and therefore, difference between any 2 magnetometer readings is

caused by the rotation.

Comment

It is very impressive that how this method is. Therefore, there are a lot of

advantages of this concept comparing to the previous one.

Firstly, magnetometer reading is available all the time; the measurement

system is not limited to anything that is uncontrollable at all – the window of

opportunity of taking reading is always open in this case. Secondly, it is very

easy to use, does not need complicated mathematical models and

consequently requires far less computational power – any change on the

magnetometer readings over the certain time step is due to rotation. As a

combined result, aliasing issues could be avoided.

Therefore, the second concept is chosen as the method to measure the

rotation.

33

Measure the Rotation

There are only two parameters of rotation are required for the control system.

a) Speed of the rotation.

b) The inclination angle between the Earth’s field and the rotational axis.

Measure Speed

Speed of rotation is required for obvious reason – need to know how fast the

satellite is rotating, so that the following issues could be decided:

a) whether or not turning on the de-tumble system;

b) the step size of the control action (will discussed in details latter);

How to achieve it?

As discussed before, magnetometer returns readings that represent the earth’s

field direction and magnitude, respect to the satellite itself. Moreover, the

measurement system assumes the earth’s field is constant and takes reading

from the magnetometer at a constant time step.

For example, as seen from graph, at time instance 1, the system takes a

reading from the magnetometer, yielding B1; after a time step, another

reading form the magnetometer is taken, yielding B2; lastly, B3 is also obtained

after the same time step by the magnetometer.

Figure 17 – Rotation Analysis Diagram

34

Due to the nature of magnetometer, the satellite looks stationary; the earth’s

field, on the other hand, looks like rotating in an anti-clockwise manner to the

satellite in this case.

The angle θ, defined as the rotational angle between 2 measurements, can be

calculated in the following equation.

In another word, θ is the angle that the satellite rotates over a time step;

therefore, the speed of rotation can consequently be calculated as θ divided by

step-time.

Measure Inclination Angle of the Earth’s Field

The inclination angle, α, is defined as the angle between the satellite’s

rotational axis and the earth magnetic field.

Figure 18 – Different Manners of Rotation

As shown in the images above, the earth’s magnetic field would rotate around

the satellite (from the magnetometer view) in many different manners – the

angle, α, could be anything between 0 degree, parallel to the rotational axis, to

90 degree, perpendicular to the rotational axis.

35

Measuring the inclination angle is very important, since it will significantly

affect the efficiency of magnetic-torque actuation, which will be discussed in

the latter chapter.

How to achieve it?

Some equations are obtained after analyzing the inclination diagram.

Figure 19 – 3D View of Rotation

Assuming the magnetometer reading has already normalized,

Since θ is already known from the previous step, therefore α could simply be

calculated as:

r

36

Summary

In short, a method has been developed to measure the parameters of the

satellite rotation.

Reading from only 1 sensor – magnetometer is required, which is available all

the time. Only 2 parameters are required to calculate, α and θ, which could be

obtained by a few simple equations. That is a very low computational load and

feasible to operate even on the weak onboard CPU.

37

Stage 3 – Control System Development

Magnetic-torque Actuation Philosophy

Actuating the coils to control the orientation of the satellite seems complicated,

but it can be broken down to simply philosophy and understand.

Figure 20 – Actuation Philosophy

For the example that shown in the graph above, the earth magnetic field

points towards right; in instance 1, the front of the satellite also points towards

the same direction, which is represent by the solid blue line. Sometime later,

due to rotation, however, the front of the satellite is no longer pointing to the

same direction as the earth’s field, and drifts to the red line position. However,

if a magnetic moment is generated, with the same direction as the front of the

satellite; then the resulting torque will try to reverse the rotation and re-align

the front of the satellite to the earth’s field.

Therefore, in this method, it is not even required to know direction of the

rotation – just take a reading from the magnetometer and generate a magnetic

moment in exactly the same direction as where the earth’s field is recorded

respect to the satellite itself. By doing so, the rotational motion can be slow

down regardless of its direction, since there is always a generated torque

trying to reverse the satellite’s rotation. The best example to visualize is a DC

38

motor without a commuter – when it is powered, the coils will be re-aligned to

the same direction as the field.

On the other hand, if a magnetic moment is generated when the earth’s field is

not perpendicular to the satellite’s rotational axis, as shown in the image

below; the generated moment would have little effect on slowing the rotation

down, but to create another side effect – adding more speed component on

other axes by using the limited power from the battery. This is very bad and

has to be avoided from the control system.

Figure 21 – Cone Shape Rotation

Therefore, the coils should be actuated only when the inclination angle, α, is in

the range of 80 to 90 degree – in order to maximize the effect of slowing the

rotation down and minimize the side effect that might be created.

39

Full Control-Action Steps

The full control action cycle is a 6-point cycle.

The first 3 points will be classed as measurement stage – readings from the

magnetometer are recorded with a “fix” time-step. With equations that

introduced before, θ (speed) and α (inclination) are calculated.

If α is between 80 to 90 degree, then the satellite would enter the next 3

points of the control cycle, which is called the actuation stage. A magnetic

moment is generated in the next time-steps, with exactly the same direction as

where the earth’s field is recorded at point 2, respect to the satellite itself. By

doing so, the generated moment would be approximately perpendicular to the

earth’s field and both of them will be perpendicular to the rotational axis, so

that the rotational speed could be slowed down and the magnetic-torque

efficiency could be maximized.

On the other hand, if α value is not between 80 and 90 degree, then the

satellite would skip the following 3 actuating points and start the 6-point

control action cycle over again – it will keep waiting in the first 3 points in the

control cycle, until the α is within optimal range, then actuate the coils.

Figure 22 – 6 Points Control System

40

In addition, anytime the process finishes the first 3 point in the control cycle,

the time step will be updated by the latest rotational speed, in order to keep

step angle approximately 30 degree which helps with the magnetic-torque

efficiency.

Summary

In summary, a de-tumble control system concept has been fully developed. It is

a very simple and sophisticated solution for sensing the rotation and actuating

the coils – minimal amount of sensor is required, extremely low computational

load and do not even need to know the direction of the rotation.

41

Stage 4 – Simulation
Simulation models are constructed in MATLAB to test the fully developed de-

tumble control system, with as close to real physical scenario as possible.

To simulate the whole system, there are three essential parts:

a) emulated environment

b) controller model

c) motion calculator

Environment Emulation

Emulating the environment means reproducing the actual space environment

with programs.

Firstly, the orbits for KiwiSAT are simulated by using the orbit’s parameters

from another satellite that has almost identical orbit. (Vallado & Crawford,

2006) Secondly, based on the positions on the simulated orbits and the earth

magnetic field model, the exact earth’s fields on each point of the orbit are

calculated. (Maus, et al., 2010) Therefore the configurations of the earth’s field

are obtained.

Figure 23 – Simulated Orbits and Earth’s Fields

-1
-0.5 0

0.5
1

-1

0

1

-1

-0.5

0

0.5

1

ECI axes North:green Vernal:magenta

42

Motion Calculator

Motion calculator, is an engine of implementing Euler’s equations of dynamics

motion, which had been covered in the Literature Review. It calculates the

attitude of the satellite in the next moment, based on the current attitude and

applied torque, which is the resulting product of the generated moment and

earth’s field interaction.

Moreover, this is also where the moments of inertia of the satellite are

required.

Controller model

The 6-point control cycle system is turned into MATLAB code, which “reads”

the magnetometer; preforms calculations for required parameters and

“actuates” coil accordingly.

Arming with these 3 parts, proper simulations could then be performed.

43

Stage 5 – Simulation Results Analysis
Results from the simulation suggest that the de-tumble system is functioning

properly – it is able to slow the satellite’s rotation of 0.98 rad/sec, which is

about 10 RPM, to very low, 0.1 RPM. Its performance is very encouraging –

achieving more than the specification required.

Figure 24 – Simulated Controller Performance

Discussion

Each red line represents the end of orbit; in another word, the de-tumble

controller is able to halve the rotation speed within only 3-orbit time, which is

a lot better than expected.

In addition, it is noticed that the speed reduces in a shape that looks like stair

case. This is due to the nature of the de-tumble system – it waits until an

optimal inclination angle, α, is reached to actuate the coils. The speed stays flat

while the control system is waiting; the speed reduces when the control

system finds opportunities and actuates the coils. Furthermore, it is also

discovered that, there are always 4 points/orbit that the earth’s field is

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
 (

R
P

M
)

Time (sec)

44

perpendicular to the rotational axis, which are considered to be opportunities

and the coils could actuate by.

Stage 6 – Translate Simulated Control System to C
The last step of the control system development is to convert the simulated

control system into C, which will be uploaded to the actual satellite’s CPU.

The C program controller has been implemented with sub-routines that are

linked to controlling physical hardware, such as getting reading from the

magnetometer and actuating the coils with a desired sequence and time step.

Lastly, the C program had been checked and modified by other members in the

KiwiSAT Project Team and physically uploaded to the satellite and tested.

45

Conclusion
In conclusion, a de-tumble controller has been fully developed by following the

project stages as mentioned in the introduction section. It has impressive

performance and is able to slow the satellite from a high rotation speed of 10

RPM to very low, which satisfied the specification. Lastly, it has been fully

verify, tested and ready to be uploaded to the actual satellite for the space

mission.

46

Reference

AMSAT-ZL. (2006). KiwiSAT Sponsors. Retrieved 10 2013, from KiwiSAT:

http://www.kiwisat.org.nz/sponsors.html

AMSAT-ZL. (2013). Attitude Determination and Control System. Retrieved 10

2013, from KiwiSAT: http://www.kiwisat.org.nz/science_1.html

AMSAT-ZL. (2013). KiwiSAT ADAC. Retrieved 10 2013, from KiwiSAT:

http://www.kiwisat.org.nz/ADAC_Students.html

AMSAT-ZL. (2013, 8). KiwiSAT Current Status. Retrieved 10 2013, from KiwiSAT :

http://www.kiwisat.org.nz/status.html

AMSAT-ZL. (2013). The KiwiSAT "Science Package". Retrieved 10 2013, from

KiwiSAT : http://www.kiwisat.org.nz/science.html

Kennedy, F. (2011). KiwiSAT Science Package Proposals.

Kosmotras . (2001). User's guide for Russia's Dnepr launch vehicle.

Kosmotras. (n.d.). Dnepr LV. Retrieved 10 2013, from Kosmotras:

http://www.kosmotras.ru/en/rn_dnepr/

Maus, S., Macmillan, S., McLean, S., Hamilton, B., Nair, M., Thomson, A., et al.

(2010). The US/UK World Magnetic Model for 2010-2015. New

York/Edinburgh: NOAA Technical Report NESDIS/NGDC.

Tate, V. H. (1978). Introduction to Attitude Control. In J. R. Wertz, Spacecraft

Attitude Determination and Control (pp. 502-509). Dordrecht: D. Reidel

Publishing Company.

Vallado, D. A., & Crawford, P. (2006). SGP4 Orbit Determination. American

Institute of Aeronautics and Astronautics.

Wertz, J. R. (1978). Spacecraft Attitude Determination and Control. Dordrecht:

D. Reidel Publishing Company.

47

Appendix 1 – Images

The Satellite

Real Satellite

48

A part of the KiwiSAT Project Team with the real satellite

49

Battery Tray

50

Magnetic Coils

Actual Magnetic Coils: 175x180mm, 110 turns, 26.7Ω, 12V applied

51

Development of moments of inertia testing method

52

Experiment results:

53

Rotational measurement and control system development

y = 0.0003x - 0.0113

-0.03

0

0.03

0.06

0.09

0.12

0.15

0.18

0 100 200 300 400 500 600 700

Moment Inertia kg-m2

Measured

Calibrate

Check

54

55

Appendix 2 – Simulation Software Code

Field_orbit3000.m

% Programme to generate file of Satellite Position and Earth Mag Field
% wrt Earth centred celestial reference frame. (Inertial frame).
% Position in: Rad dist(km) Latc(deg) Lonc(deg)
% Earth's Mag Field in Bxc, Byc, Bzc, (uT)
% Calls SGP_AO51, B_Earth

clear all
%% Ask the user to input the exact date and time of the start of the orbit
fprintf('\nplease enter a date (DAY/MONTH/YEAR) of the start of orbits to

be calculated.\n')
fprintf('Example: 2nd of October, 2012 should be entered as

02/10/2012.\n\n')
da=input('date :','s');
fprintf('\n%s\n',da)
Date = sscanf(da,['%d/']);
%Date(1,1) is day
%Date(2,1) is month
%Date(3,1) is year
n1=sprintf('%d/%d/%d',Date(2,1),Date(1,1),Date(3,1));
n2=sprintf('12/31/%d',Date(3,1)-1);%comepare with a reffernece date - the

last day of the last year
NumDays = daysact(n2,n1); % to calculate "D22-38717" part in the excel

fprintf('\nplease enter a time (HOUR:MIN:SECOND) of the start of orbits to

be calculated.\n')
fprintf('Example: Nine, Forty-Five PM, 40 second should be entered as

21:45:40.\n\n')
ti=input('time :','s');
fprintf('\n%s\n',ti)
Time = sscanf(ti,['%d:']);
%Time(1,1) is hour
%Time(2,1) is min
%Time(3,1) is second
eq_min= (Time(3,1)/60);
min = Time(2,1)+eq_min;
eq_hour = min/60;
hour = Time(1,1) + eq_hour;
eq_day = hour/24;

NASA = NumDays + ((Date(3,1)-2000)*1000)+eq_day
% making a string that contains the full info of the date of the start of

the prbit, in year/month/day/hour/min/second
FullDate =

sprintf('%d/%d/%d/%d/%d/%d',Date(3,1),Date(2,1),Date(1,1),Time(1,1),Time(2,

1),Time(3,1));
% JD = JDtry(FullDate);

%% Read the data file for epoch
filename = '10,1,2013AO_51.txt';
delimiterIn = ' ';
headerlinesIn = 1;
A = importdata(filename,delimiterIn,headerlinesIn);

epoch = sscanf(char(A.textdata(4)),'%f32');% Time after epoch

(13/9/2012),time of satellite's data taken
 day = NASA - epoch;

56

fprintf('That is %d days after the epoch,',day)
fprintf('Example, 1.986862e+001 means 19 days with a few more hours.\n\n\n')

if(day>15)
 run=0;
 fprintf('The Keps paramaters are a bit old, newer data can be download

from: \n')
 fprintf('http://www.amsat.org/amsat/ftp/keps/current/nasa.all')
 fprintf('\nhowever, would you still like to continue the

calculation?\n')
 temp=input('Y/N :','s');
 temp2 = sscanf(temp,['%c']);
 if(temp2=='Y' || temp2=='y')
 run=1;
 else
 run=0;
 end
elseif(day>0)
 run=1;
else
 fprintf('The time of the start of the orbit is before the Keps

paramaters measured, older data can be download from: \n')
 fprintf('http://www.amsat.org/amsat/ftp/keps/current/nasa.all')
 fprintf('\nhowever, would you still like to continue the

calculation?\n')
 temp=input('Y/N :','s');
 temp2 = sscanf(temp,['%c']);
 if(temp2=='Y' || temp2=='y')
 run=1;
 else
 run=0;
 end
end

%% Execute calculation
if(run==1)

 fprintf('Busy calculating.....\n\n\n')

 % Enter the orbit points required
 %day = 10; % 10 days after epoch (23 May 2006)
 % Same orbit as in Predict_b2
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %change over to 10 a default
 dt = 10; % one orbits of AO51
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %% Call the function to get the position of the satelite,by given time
 Pos = SGP_AO51_read_text_JDcal(day,600*5,dt,FullDate);
 %Pos's data is in cerlestial or Earth-fix longtitude and latitude

system
 Fld = zeros(600*5,3);

BEarth = zeros(600*5,3);

 % calculate field over orbit
 for n = 1:600*5
 %% Find field
 % returns the Earth magnetic field in the Earth-fix spherical

axis(r, theta and phi)
 BEarth(n,1:3) = B_Earth2010(Pos(n,1),90-Pos(n,2),180+Pos(n,4));
 theta = (pi/180)*(90-Pos(n,2));

57

 phi = (pi/180)*Pos(n,3);
 H = [sin(theta)*cos(phi) cos(theta)*cos(phi) -sin(phi);...
 sin(theta)*sin(phi) cos(theta)*sin(phi) cos(phi);...
 cos(theta) -sin(theta) 0];
 Fld(n,1:3) = (H*Bearth(n,1:3)')';

 end
 %% Save the data to temp file "Pos_Fld"
 Pos_Fld = [Pos(:,1:3),Fld,Pos(:,5)];%radial dist(km), latc (deg), longc

(deg), 3 axis magnetic field in cerlestial coordinate and JD

 save temp1 Pos_Fld

 %% Generating the SatPosition file for Tim
 [nrows,ncols]=size(Pos_Fld);
 filename = 'SatPosition.txt';
 fid = fopen(filename,'W');
 time = 0;
 for row = 1:nrows
 fprintf(fid,

'%d\t%f\t%f\t%f\r\n',time,Pos(row,1),Pos(row,2),Pos(row,3));
 time = time + dt;
 end
 fclose(fid);

 fprintf('Calculations have been completed,\n')
 fprintf('For display the Orbits and Magnetic Field results, please run

Examine3000.m\n')
 fprintf('For conducting the Simulations of when magnetic coils are

energised, please run Kiwisatcont4b_sim.m\n')
else
 fprintf('Programme ends.\n')
end

10,1,2013AO_51.txt

1 28375U 04025K 13003.89155755 .00000122 00000-0 49230-4 0 4541

2 28375 098.1762 326.1541 0083310 152.5761 207.9855 14.410513144 47672

SGP_AO51_read_text_JDcal.m

function Pos = SGP_AO51_read_text_JDcal(day,n,dt,FullDate)
% Function to give radial dist(km), latc (deg), longc (deg), lon (deg)
% at points along satellite orbit.
% Start time after epoch : day (unit = day)
% Number of points : n
% Time increment between points = dt (unit = sec)
% Uses SGP model
% Calls LoncGrch

%% Inport Orbit's Data from the data file
filename = '10,1,2013AO_51.txt';
delimiterIn = ' ';
headerlinesIn = 1;
A = importdata(filename,delimiterIn,headerlinesIn);

58

% Inclination = A.data(1, 3)
% RAAN=A.data(1, 4)
% Eccentricity =A.data(1, 5)/10000000
% Argument_of_Perigee=A.data(1, 6)
% Mean_Anomaly=A.data(1, 7)
% Mean_Motion=A.data(1, 8)
% Revolution_Number_at_epoch =A.data(1, 9)

% Rate_of_change_of_Mean_motion = sscanf(char(A.textdata(5)),'%f')
% epoch = sscanf(char(A.textdata(4)),'%f32')

% Orbit parameters (KEPs) at epoch
to = sscanf(char(A.textdata(4)),'%f32'); % Time after epoch

(13/9/2012),time of satellite's data taken

eo = A.data(1, 5)/10000000; % Eccentricity of orbit
io = A.data(1, 3); % Inclination of orbit (deg)
Mo = A.data(1, 7); % Mean Anomaly (deg)
no = A.data(1, 8); % Mean motion (rev/day)

dnodt = sscanf(char(A.textdata(5)),'%f'); % Rate of change of Mean motion

(rev/day/day)
d2nodt2 = 0; % Acceleration of Mean motion (rev/day/day/day)
wo = A.data(1, 6); % ARGument of Perigee (deg)
Wo = A.data(1, 4); % RAAN (deg)

% Getting the full info of the date of the start of the prbit, in

year/month/day/hour/min/second
DateJD = sscanf(FullDate,['%d/']);
%DateJD(1,1) is year
%DateJD(2,1) is month
%DateJD(3,1) is day
%DateJD(4,1) is hour
%DateJD(5,1) is min
%DateJD(6,1) is second
JD =

juliandate([DateJD(1,1),DateJD(2,1),DateJD(3,1),DateJD(4,1),DateJD(5,1),Dat

eJD(6,1)]);
%the difference of the JD between every step size
JDstep = (juliandate([2012,10,10,10,10,10]) -

juliandate([2012,10,10,10,10,9]))*dt;
JDcount = JD;

%% Find celestial longitude of Greenwich at time of epoch
ne = 360.98564736629; % Rotation of earth (deg/day)
lonc_grn = LoncGrch(to);

%% Constants
ae = 6378.135; % Earth radius (km)
a1 = (8681660.4/no)^(2/3); % Approx major semi-axis (km)
cJ2 = 0.5*0.00108263*(ae/a1)^2; % 0.5*J2*(ae/a1)^2
J3rJ2 = -0.00234507; % Ratio of J3 to J2
d1 = 1.5*cJ2*(3*cos(pi*io/180)^2-1)/(1-eo^2)^1.5;
ao = a1*(1-d1/3-d1^2-(134/81)*d1^3); % Major semi-axis at epoch
po = ao*(1-eo^2);
qo = ao*(1-eo);
Lo = Mo + wo + Wo;
dWdt = -3*cJ2*(a1/po)^2*360*no*cos(pi*io/180); % deg per day
dwdt = 1.5*cJ2*(a1/po)^2*360*no*(5*cos(pi*io/180)^2-1); % deg per day

59

Pos = zeros(n,5);
for m = 1:n
 t = day + (m-1)*dt/86400;%86400 seconds per day

 %% Secular perturbations
 a = ao*(no/(no+dnodt*t+0.5*d2nodt2*t^2))^(2/3); % Major sem-axis
 if a > qo, e = 1-qo/a; else e = 1e-6; end
 p = a*(1-e^2);
 Wso = Wo + dWdt*t; % RAAN
 wso = wo + dwdt*t ; % Arg perigee
 Ls = Lo + (360*no+dwdt+dWdt)*t + 360*((dnodt/2)*(t^2) +

(d2nodt2/6)*(t^3)); % Full anomaly

 %% Convert angles to radians
 Lsr = (pi/180)*Ls; Wsor = (pi/180)*Wso;
 wsor = (pi/180)*wso; ior = (pi/180)*io;
 ayNSL = e*sin(wsor) - 0.5*(J3rJ2)*(ae/p)*sin(ior);
 axNSL = e*cos(wsor);
 Lr =Lsr -

0.25*(J3rJ2)*(ae/p)*axNSL*sin(ior)*((3+5*cos(ior))/(1+cos(ior)));

 %% Solve Keplers equn
 Ur = Lr - Wsor; % Eccentric anomaly (initial)
 Ewr = Ur;
 Ewor = Ewr+1;
 while abs(Ewr-Ewor) > 0.0000001
 Ewor = Ewr;
 dEwor = (Ur-ayNSL*cos(Ewor)+axNSL*sin(Ewor)-Ewor)/(1-

ayNSL*sin(Ewor)-axNSL*cos(Ewor));
 Ewr = Ewor + dEwor;
 end

 %% Intermediate partially oscultating quantities
 ecosE = axNSL*cos(Ewr) + ayNSL*sin(Ewr);
 esinE = axNSL*sin(Ewr) - ayNSL*cos(Ewr);
 eL2 = axNSL^2 + ayNSL^2;
 pL = a*(1-eL2);
 r = a*(1-ecosE);
 sinu = (a/r)*(sin(Ewr)-ayNSL-axNSL*esinE/(1+sqrt(1-eL2)));
 cosu = (a/r)*(cos(Ewr)-axNSL+ayNSL*esinE/(1+sqrt(1-eL2)));
 ur = atan(sinu/cosu);
 if cosu<0 ur = ur + pi; end

 %% short period pertubations are now included
 rk = r + 0.5*cJ2*(a1^2/pL)*sin(ior)^2*cos(2*ur);
 ukr = ur - 0.25*cJ2*(a1/pL)^2*(7*(cos(ior))^2-1)*sin(2*ur);
 Wkr = Wsor + 1.5*cJ2*(a1/pL)^2*cos(ior)*sin(2*ur);
 ikr = ior + 1.5*cJ2*(a1/pL)^2*sin(ior)*cos(ior)*cos(2*ur);

 %% Calculate unit postion vector wrt Celestial XYZ axes
 M = [-sin(Wkr)*cos(ikr) cos(Wkr)*cos(ikr) sin(ikr)];
 N = [cos(Wkr) sin(Wkr) 0];
 U = M*sin(ukr) + N*cos(ukr);

 %% Calculate position in terms of Radial dist, latC & onc
 rad = rk;
 latc = (180/pi)*asin(U(3));
 rxy = sqrt(U(1)^2 + U(2)^2);
 lonc = (180/pi)*acos(U(1)/rxy);

60

 if U(2)< 0
 lonc = -lonc;
 end

 %% Transform Celestial longitude to terrestrial longitude by -
 % subtracting celestial longitude of Greenwich and angle of
 % earth's rotation since epoch.
 lon = lonc - lonc_grn - ne*t;
 lon = lon - 360*fix(lon/360); % Bring into 360 deg range
 if lon <= -180
 lon = lon + 360; % Bring into -180 > +180 range
 elseif lon > 180
 lon = lon - 360;
 else end

 Pos(m,:) = [rad,latc,lonc,lon,JDcount];
 JDcount = JDcount + JDstep;
end

B_earth2010.m

function field=B_earth2010(r,theta,phi)
% Function to compute Radial, Theta, Phi components of
% Earth's Magnetic Field (nT) at single point.
% Note theta = 90-latitude, phi = 180+longitude
% These theta & phi are for sph polars and phi is different to one

used in IGRF10.
% Note at Auckland, latitude = -36.6, longitude = 175

latrad = pi*(90-theta)/180;
longrad = pi*(phi)/180; % Note 180deg ADDED

% World Magnetic Model coefficients
t = 2.5; % Decimal time in yr from Yr 2010, use for magnetic field

calculation
wmm_coef = [-294966 0 116 0; -15863 49444 165 -259; -23966 0 -121 0;
 30261 -27077 -44 -225; 16686 -5761 19 -118; 13401 0 4 0;
 -23262 -1602 -41 73; 12319 2519 -29 -39; 6340 -5366 -77 -26;
 9126 0 -18 0; 8089 2864 23 11; 1667 -2112 -87 27;
 -3571 1643 46 39; 894 -3091 -21 -8; -2309 0 -10 0;
 3572 446 6 4; 2003 1889 -18 18; -1411 -1182 -10 12;
 -1630 0 9 40; -78 1009 10 -6; 728 0 -2 0;
 686 -208 -2 -2; 760 441 -1 -21; -1414 615 20 -4;
 -228 -663 -17 -6; 132 31 -3 5; -779 550 17 9;
 805 0 1 0; -751 -579 -1 7; -47 -211 -6 3;
 453 65 13 -1; 139 249 4 -1; 104 70 3 -8;
 17 -277 -7 -3; 49 -33 6 3; 244 0 -1 0;
 81 110 1 -1; -145 -200 -6 2; -56 119 2 4;
 -193 -174 -2 4; 115 167 3 1; 109 70 3 -1;
 -141 -108 -6 4; -37 17 2 3; 54 0 0 0;
 94 -205 -1 0; 34 115 0 -2; -52 128 3 0;
 31 -72 -4 -1; -124 -74 -3 1; -7 80 1 0;
 84 21 -1 -2; -85 -61 -4 3; -101 70 -2 2;
 -20 0 0 0; -63 28 0 1; 9 -1 -1 -1;
 -11 47 2 0; -2 44 0 -1; 25 -72 -1 -1;

61

 -3 -10 -2 0; 22 -39 0 -1; 31 -20 -1 -2;
 -10 -20 -2 0; -28 -83 -2 -1; 30 0 0 0;
 -15 2 0 0; -21 17 0 1; 17 -6 1 0;
 -5 -18 0 1; 5 9 0 0; -8 -4 0 1;
 4 -25 0 0; 18 -13 0 -1; 1 -21 0 -1;
 7 -19 -1 0; 38 -18 0 -1; -22 0 0 0;
 -2 -9 0 0; 3 3 1 0; 10 21 1 0;
 -6 -25 -1 0; 9 5 0 0; -1 6 0 1;
 5 0 0 0; -4 1 0 0; -4 3 0 0;
 2 -9 0 0; -8 -2 -1 0; 0 9 1 0];
wmm_coef = 0.1*wmm_coef;

latinc = pi/360; % Increment used for calculating gradient
a = 6371.2; % Standard Earth Reference radius in km

% Find X, Y, Z components
Xt=0;
Yt=0;
Zt=0;
for n=1:12
 SP=legendre(n,sin(latrad),'sch');
 SPgradu=legendre(n,sin(latrad+latinc),'sch');
 SPgradl=legendre(n,sin(latrad-latinc),'sch');
 nn = n*(n+1)/2;
 Xm=0;
 Ym=0;
 Zm=0;
 for m=0:n
 gcos = (wmm_coef(nn+m,1) + t*wmm_coef(nn+m,3))*cos(m*longrad);
 hsin = (wmm_coef(nn+m,2) + t*wmm_coef(nn+m,4))*sin(m*longrad);
 gsin = (wmm_coef(nn+m,1) + t*wmm_coef(nn+m,3))*sin(m*longrad);
 hcos = (wmm_coef(nn+m,2) + t*wmm_coef(nn+m,4))*cos(m*longrad);
 Xm = Xm + (gcos+hsin)*(((-1)^m)*SPgradu(m+1)-((-

1)^m)*SPgradl(m+1))/(2*latinc);
 Ym = Ym + m*(gsin-hcos)*((-1)^m)*SP(m+1);
 Zm = Zm + (gcos+hsin)*((-1)^m)*SP(m+1);
 end
 Xt=Xt+Xm*(a/r)^(n+2);
 Yt=Yt+Ym*(a/r)^(n+2);
 Zt=Zt+Zm*(n+1)*(a/r)^(n+2);
end
Bradial = Zt; % Note + , because outward
Btheta = Xt; % Note + , because in theta dirn (ie south)
Bphi = Yt/cos(latrad); % Note + , because in phi dirn (ie east)
field=[Bradial Btheta Bphi];

62

Examine3000.m

% Programme to examine Position & Mag Field of an orbit
% wrt earth centred inertial reference frame. (Celestial cord).
% Rad dist(km) Latc(deg) Lonc(deg) Bx(nT) By(nT) Bz(nT)
% Loads previously generated data file temp1

%% Load the data
clear all
clf
num = 600*5; % Number of data points in orbit, for 5 times
load temp1 Pos_Fld; % Previosly calculated orbit and field. See

Field_orbit
B = zeros(num,4);
B(:,1:3) = Pos_Fld(:,4:6); % Earth's magnetic field (in celestial XYZ axis)
% Calculate magnitude of B at each point.
for n=1:num,
 B(n,4)=norm(B(n,1:3));
end %calculate the magnitude of the magnetic field and store it in the 4

column

%% Plot magnitude of earth's field vs latitude
figure(1)
hold on
plot(Pos_Fld(:,2),B(:,4))%the second column of Pos_Fld is Latitude
plot(Pos_Fld(1,2),B(1,4),'k*')%starting point, the first value in Latitude

and Mag.field
axis([-90 90 0 5E4])
title('Magnitude of Earths Field (nT) v Latitude')
% title('')
hold off

%% Plot point to point differences of earth's field
D = zeros(num,4);
for n=2:num
 for nn=1:3
 D(n,nn)=B(n,nn)-B(n-1,nn);%calculated the differences between each

point
 end
 D(n,4) = norm(D(n,1:3));% the norm of the difference, which has already

taken the change of direction into account
end
figure(2)
plot(1:num,D(:,4))
title('Point-to-point differents of Earths Field (nT) v 10sec')

%% Put orbit into xyz cordinates ?? TickTick
% how to obtain the x y and z coordinate by latc and longc?
% what does it actually mean? convert the celartial system to...?
thetar = (pi/180)*Pos_Fld(:,2);%cerlestial latitude, not bolar angel
phir = (pi/180)*Pos_Fld(:,3);%cerlestial longtitude, not bolar angel
x = cos(thetar).*cos(phir);%where is the radius? should be multiply

together as well.
y = cos(thetar).*sin(phir);%get the satellite's position in cerlestial

corrdinate by using cerlestial latitude and longtitude
z = sin(thetar);
figure(3)
hold on
plot3(x,y,z,'b')
plot3(x(1:2),y(1:2),z(1:2),'b*')

63

axis([-1.2 1.2 -1.2 1.2 -1.2 1.2])

%% Plot field vectors at every 10 points. ??
xd = zeros(2,1);
yd=xd;
zd=xd;
for n=1:10:num
 xd(1) = x(n);
 yd(1) = y(n);
 zd(1) = z(n);
 xd(2) = xd(1) + 0.1*B(n,1)/B(n,4);% is is really necessary to be devided

by the norm? i think doesn't matter the direction, but just have got

smaller number easier to display
 yd(2) = yd(1) + 0.1*B(n,2)/B(n,4);
 zd(2) = zd(1) + 0.1*B(n,3)/B(n,4);
 plot3(xd,yd,zd,'r')%3D plotting the vector line from point (xd1,yd1,zd1)

to point (xd2,yd2,zd2)
end
s=1.5;
plot3([0 s]',[0 0]',[0 0]','m')
plot3([0 0]',[0 s]',[0 0]','k')
plot3([0 0]',[0 0]',[0 s]','g')
title('ECI axes North:green Vernal:magenta')
% Plot RAAN = 196.8+9.56 = 206.4
plot3([0,cos((pi/180)*206.4)]',[0,sin((pi/180)*206.4)]',[0 0]','b')%what it

is for? how to calculate that? why not just read the RAAN from the doc?
view(-45,20) % 206.4 > -90-63.6 Therefor use (-63.6,0) for side on view
hold off

%% Plot the actual magnetic field magnetude through the whole process
figure(4)
plot(B(:,4))
title('Magnitude of Earths Field (nT) v 10sec')

%% plot the actual magnetic field magnetude difference vs tiem (or the rate

of change)

D2 = zeros(num,1);
figure(5);
for n = 2:num
 D2(n,1) = B(n,4)-B(n-1,4);
end
plot(D2(:,1))
title('rate of change of the earth Magnitude Field (nT) v 10sec');

%% plot the actual magnetic field magnetude difference vs latitude (or the

rate of change)
figure(6);
plot(Pos_Fld(:,2),D2(:,1))
title('rate of change of the earth Magnitude Field (nT) v Latitude');

LaDetum_msPlateForm2.m

%% Initialization and Data Loading
clear all
tlim = 29991;
nn = tlim/1; % Number of points in the orbit

64

% Initial attitude and angular velocity of satellite
qo = [0.3711, 0.3711, -0.3711, -0.7660];

qo = qo/norm(qo);
wbo = 1*[0.6 0.5 0.6]'; % Initial angular velocity
TorqK = 80;

% Satellite Moments of Inertia
Inertia = [0.15 0.15 0.15]'; % Pr Mmts of Inertia of satellite around CG
k = zeros(3,1); % Normalised inertia coefficients
k(1) = (Inertia(2)-Inertia(3))/Inertia(1);
k(2) = (Inertia(3)-Inertia(1))/Inertia(2);
k(3) = (Inertia(1)-Inertia(2))/Inertia(3);

Gxm = -0.5; Gym = 0.5; Gzm = 0.5;%gain and offset of the magnitometor
Vxmo = 2.42; Vymo = 2.48; Vzmo = 2.53;

% load Earth's Mag Field
load temp1 Pos_Fld; % Previously calculated orbit and field. See

Field_orbit
%Pos_Fld is in such a formate: radial dist(km), latc (deg), longc (deg),

magnetic field in 3 axis and JD
%% Do you want to play animation?
Display = input('Do you want to play animation? (Y/N)','s');
Display = sscanf(Display,['%c']);
if(Display=='Y' || Display=='y')
 Displayrun=1;
else
 Displayrun=0;
end

%% Getting Earth's magnetic field information
B = zeros(3000,3);
B(:,1:3) = 1e-9*Pos_Fld(1:3000,4:6);
for jj=1:3000
 Bcn(jj,4) = norm(B(jj,:));
 Bcn(jj,1:3) = B(jj,1:3)/Bcn(jj,4);
end

for ii=1:3
 kk=1;
 for jj=1:2999
 step=(B(jj+1,ii)-B(jj,ii))/10;
 Bsec(kk,ii)=B(jj,ii);
 for ll=1:10
 Bsec(kk+1,ii)=Bsec(kk,ii)+step;
 kk=kk+1;
 end
 end
end

% Initialse state storage matrices
q = zeros(nn,4); % Quaternion states
wRota = zeros(nn,3);
ActuTorq = zeros(nn,3);
MbDisplay = zeros(nn,3);
x = zeros(nn,3);
y = zeros(nn,3);
z = zeros(nn,3);

65

MagSen = zeros(nn,3);%instance magnitometer reading for the x axis
b1Cal=zeros(1,3);
b2Cal=zeros(1,3);
b3Cal=zeros(1,3);
b1norm=zeros(1,3);
b2norm=zeros(1,3);
b3norm=zeros(1,3);

d21=zeros(1,3);
d32=zeros(1,3);
Ampd21=zeros(1000,1);
Ampd32=zeros(1000,1);
% AmpDiff=zeros(2000,1);
CoilOn=zeros(nn,1);
SpeedTemp = 0;
% normMagCalRotaAxis = zeros(nn,3);

t = zeros(nn,1); % Time points
%% Start the Computation for Visualization ???
tlimD = 1; % Time limit per orbit step
dataReady = 0;
kk=1;
DataState = 0;
ActionStep = 1;
% EnergiseStep = 1;
DefaultStep = 1; % one step represents 1 second
% TorqK = 2;
DetumSys = 1;
% tempMeasureStep = 0;
% ll=1;
M = [0 0 0];
for jj = 1:nn %% Main Loop

 MbDisplay(jj,:)=M;

 if jj==1
 q(jj,:) = qo;%record the initial attitude
 qTemp=q(jj,:);
 wRota(jj,:)=wbo;%record the initial rotaional speed
 wTemp=wRota(jj,:);
 else
 B1 = Bsec(jj-1,1:3);
 B2 = Bsec(jj,1:3);
 [Mb,qn,wbn,Tg,tfin] =

LaDetum_Rotdyn(qTemp,wTemp,B1',B2',M,tlimD);%similar funtion to the

Simulink model
 q(jj,:) = qn;%record the attitude
 qTemp = qn;%feed the attitude back
 ActuTorq(jj,:) = Tg;
 wRota(jj,:)=wbn;%record the rotational speed
 wTemp = wbn;%feed the rotational speed back
 end

 if jj==1
 t(jj)=0;
 else
 t(jj) = t(jj-1) + tfin;
 end

66

 tlimD = 1*jj - t(jj);

 [x(jj,:),y(jj,:),z(jj,:)] = Q_2_Carti(q(jj,:));
 %%%

%%%%%%%%%%%%%%%%%%%%%%%%
 % Jon's De-Tumble sensing
 % Calculate the rotational axis and the angle, based on the

magnitometor reading
 MagSen(jj,1) = dot(Bsec(jj,1:3),x(jj,:));%get the instance magnitometor

reading
 MagSen(jj,2) = dot(Bsec(jj,1:3),y(jj,:));
 MagSen(jj,3) = dot(Bsec(jj,1:3),z(jj,:));

 indexTemp(jj,1) = ActionStep;
 ActionStep = ActionStep - 1;
 %%%
 % Gather the magnitometor data
 if ActionStep==0 && DataState==0
 b1Cal(1,1:3)=MagSen(jj,1:3);
 b1norm(1,1:3)=b1Cal(1,1:3)/norm(b1Cal(1,1:3));
 DataState = 1;
 ActionStep = DefaultStep;
 % dataReady = 0;
 elseif ActionStep==0 && DataState==1
 b2Cal(1,1:3)=MagSen(jj,1:3);
 b2norm(1,1:3)=b2Cal(1,1:3)/norm(b2Cal(1,1:3));
 DataState = 2;
 ActionStep = DefaultStep;
 % dataReady = 0;
 elseif ActionStep==0 && DataState==2
 b3Cal(1,1:3)=MagSen(jj,1:3);
 b3norm(1,1:3)=b3Cal(1,1:3)/norm(b3Cal(1,1:3));
 DataState = 3; % finish gathering data, go to analysis them
 ActionStep = DefaultStep;
 % dataReady = 1;
 end

 if DataState==3 % analysis the data set that had just been collected
 % dataReady=0;
 d21(1,1:3)=b2norm(1,1:3)-b1norm(1,1:3);
 d32(1,1:3)=b3norm(1,1:3)-b2norm(1,1:3);
 Ampd21(kk,1)=norm(d21(1,1:3));
 Ampd32(kk,1)=norm(d32(1,1:3));

theta(kk,1)=acos(dot(d21(1,1:3),d32(1,1:3))/(Ampd21(kk,1)*Ampd32(kk,1)));

alhpa(kk,1)=asin(((Ampd21(kk,1)+Ampd32(kk,1))/4)/sin(theta(kk,1)/2));

 RotaSpeed(kk,1) = theta(kk,1)/DefaultStep;% rad/sec measurement
 SpeedTemp = RotaSpeed(kk,1);

 StepAngle(kk,1) = pi/10;
 OptiStep = (StepAngle(kk,1))/RotaSpeed(kk,1); % how many steps

required to achieve about 45 degree
 OptiStep = ceil(OptiStep);

 if RotaSpeed(kk,1)<=0.01
 DetumSys = 0;
 else

67

 DetumSys = 1;
 end

 if alhpa(kk,1)>1.3963 % when the earth field is about perpendicular

to the rota axis
 if DetumSys == 1 % if the system is on
 if RotaSpeed(kk,1)<=0.05
 TorqK = 0.8;
 elseif RotaSpeed(kk,1)<=1.2
 TorqK = 1.554;
 end
 CoilOn(jj,1)=1; % coils on
 DataState = 4; % go to the actuation mode
 % TorqK = 2;
 else
 DataState = 0;
 kk=kk+1;
 end
 else
 DataState=0;
 M = [0 0 0];
 kk=kk+1;
 end

end

 %%%

%%%%%%%%%%%%%%%%%%%%%%%%
 % Jon's De-Tumble control

 if ActionStep==0 && DataState==4 % as long as DataState stays >= 4, it

wouldn't go back to measure mode

 % M = TorqK*RotaSpeed(kk,1)*b2norm(1,1:3);
 M = TorqK*b2norm(1,1:3);
 DataState = 5;
 ActionStep = DefaultStep;

 elseif ActionStep==0 && DataState==5

 % M = TorqK*RotaSpeed(kk,1)*b2norm(1,1:3);
 M = TorqK*b2norm(1,1:3);
 DataState = 6;
 ActionStep = DefaultStep;

 elseif ActionStep==0 && DataState==6

 M = [0 0 0];

 DefaultStep = OptiStep;

 DataState = 0;
 ActionStep = DefaultStep;
 kk=kk+1;

 end

 %%%

%%%%%%%%%%%%%%%%%%%%%%%%

68

 SpeedShow(jj,1) = SpeedTemp;
end
%% Controlor proformance analysis
% AvgSpeed = mean(theta)/DefaultStep
AvgSpeed = mean(SpeedShow(3:29991,1))
LowestSpeed = min(SpeedShow(3:29991,1))
for jj=1:nn
 normTorque(jj,1) = norm(ActuTorq(jj,:));

end
normMoment = zeros(nn,1);
normField = zeros(nn,1);
TorqueEffy = zeros(nn,1);
ActuAngle = zeros(nn,1);
AngleEffy = zeros(nn,2);

kk=1;
for jj=1:nn
% normMoment(jj,1) = norm(MbDisplay(jj,:));%magnetic moment generated

by the coils
% normField(jj,1) = norm(Bsec(jj,1:3));
 if norm(MbDisplay(jj,:))~=0
 TorqueEffy(jj,1) =

norm(ActuTorq(jj,:))/(norm(Bsec(jj,1:3))*norm(MbDisplay(jj,:)));
 TorqueEffyTrack(kk,1)=TorqueEffy(jj,1);
 ActuAngle(jj,1) =

180*acos(dot(MbDisplay(jj,:),Bsec(jj,1:3))/(norm(Bsec(jj,1:3))*norm(MbDisp

lay(jj,:))))/pi;
 AngleEffy(jj,1) = ActuAngle(jj,1);
 AngleEffy(jj,2) = TorqueEffy(jj,1);
 ActuAngleTrack(kk,1) = ActuAngle(jj,1);
 kk=kk+1;
 end
end
average=mean(TorqueEffyTrack(:,1))
minEff = min(TorqueEffyTrack(:,1))

%% Plot motion of satellite axes
if Displayrun==1
 figure(1)
 % if pic==2 % Plot movie of satellite
 for jj = 1:nn
 v = [x(jj,:); y(jj,:); -x(jj,:); -y(jj,:)];
 fill3(v(:,1),v(:,2),v(:,3),'y')
 axis([-2 2 -2 2 -1.5 1.5])
 hold on
 plot3([0;x(jj,1)],[0;x(jj,2)],[0;x(jj,3)],'r')
 text(x(jj,1),x(jj,2),x(jj,3),'X','color','b','FontSize',16)
 plot3([0;y(jj,1)],[0;y(jj,2)],[0;y(jj,3)],'r')
 text(y(jj,1),y(jj,2),y(jj,3),'Y+Navi','color','b','FontSize',16)
 plot3([0;z(jj,1)],[0;z(jj,2)],[0;z(jj,3)],'r')
 text(z(jj,1),z(jj,2),z(jj,3),'Z','color','b','FontSize',16)

plot3([0;1.5*Bsec(jj,1)],[0;1.5*Bsec(jj,2)],[0;1.5*Bsec(jj,3)],'b')%plottin

g the earth magnetic field
 if norm(MbDisplay(jj,:))~=0

plot3([0;MbDisplay(jj,1)],[0;MbDisplay(jj,2)],[0;MbDisplay(jj,3)],'b')

text(MbDisplay(jj,1),MbDisplay(jj,2),MbDisplay(jj,3),'MagMo','color','b','F

ontSize',16)

69

 end

 view(0,0)
 title('Target:black Mag Fld:blue Down:cyan Depress

space bar to step display')
 hold off
 Minutes = t(jj)/60
 pause
 end
end

LaDetum_Rotdyn.m

function [Mb,qn,wbn,Tb,tfin] = LaDetum_Rotdyn(qo,wbo,B1,B2,M,tlim)
% Calculates rotation of Satellite in a Mag Fld.
% Difference from RotdynG, Input: M inertial ref Mag Moment.
% qo, wbo : initial state of satellite
% qn, wbn : final state of satellite
% tlim: time to stop calculation
% tfin: final time of calculation

% Initialise satellite parameters
Inertia = [0.115 0.115 0.115]'; % Pr Mmts of Inertia of satellite

around CG. [0.2 0.2 0.05]
k = zeros(3,1); % Normalised inertia coefficients
k(1) = (Inertia(2)-Inertia(3))/Inertia(1);
k(2) = (Inertia(3)-Inertia(1))/Inertia(2);
k(3) = (Inertia(1)-Inertia(2))/Inertia(3);
Tb = zeros(3,1); % Torque on satellite relative to body axes
A = zeros(3,3); % Attitude matrix

% Initialise Attitude matrix
qm = qo;
A(1,:) = [qm(1)^2-qm(2)^2-qm(3)^2+qm(4)^2 2*(qm(1)*qm(2)+qm(3)*qm(4))

2*(qm(1)*qm(3)-qm(2)*qm(4))];
A(2,:) = [2*(qm(1)*qm(2)-qm(3)*qm(4)) -qm(1)^2+qm(2)^2-qm(3)^2+qm(4)^2

2*(qm(2)*qm(3)+qm(1)*qm(4))];
A(3,:) = [2*(qm(1)*qm(3)+qm(2)*qm(4)) 2*(qm(2)*qm(3)-qm(1)*qm(4)) -qm(1)^2-

qm(2)^2+qm(3)^2+qm(4)^2];

% Initialse computation
tlimh = tlim/2;
tfin = 0; % Rotation starts at time zero
wbn=wbo; qn=qo; % Initialise state for 1st iteration step
% Start computation
while tfin < tlim
 if tfin < tlimh
 B=B1;
 else B=B2;
 end
 wbl=wbn; wbm=wbn; wbnn=wbn; ql=qn; qm=qn; qnn=qn; % Initialise state

for next integration step
 % Ensure the step size is no greater than 0.01 rad = 0.57 deg
 if norm(wbm) <= 0.01
 dt=1;
 else dt = 0.01/norm(wbm);

70

 end
 f1=0; f2=0; iter = 1; % Reset convergence flags and counter
 % Start iteration loop for next time step
 while (f1*f2|iter>9)==0
% Mb = A*M'; % Dipole moment relative to body axes
 Mb = M';
 Bb = A*B; % Mag field relative to body axes
 Tb(1) = Mb(2)*Bb(3)-Mb(3)*Bb(2); % Calculate torque
 Tb(2) = Mb(3)*Bb(1)-Mb(1)*Bb(3);
 Tb(3) = Mb(1)*Bb(2)-Mb(2)*Bb(1);
 wbn(1) = wbl(1) + (k(1)*wbm(2)*wbm(3) + Tb(1)/Inertia(1))*dt;
 wbn(2) = wbl(2) + (k(2)*wbm(3)*wbm(1) + Tb(2)/Inertia(2))*dt;
 wbn(3) = wbl(3) + (k(3)*wbm(1)*wbm(2) + Tb(3)/Inertia(3))*dt;
 wbm = (wbl+wbn)/2;
 if norm(wbn-wbnn)<0.00000001
 f1=1;
 else f1=0;
 end
 wbnn = wbn; % Retain for next iteration
 Q = [0 wbm(3) -wbm(2) wbm(1); -wbm(3) 0 wbm(1) wbm(2);
 wbm(2) -wbm(1) 0 wbm(3); -wbm(1) -wbm(2) -wbm(3) 0];
 qn = ql + 0.5*qm*Q'*dt;
 qn = qn/norm(qn);
 qm = (ql+qn)/2;
 if norm(qn-qnn) < 0.000001
 f2=1;
 else f2=0;
 end
 qnn = qn; % Retain for next iteration
 A(1,:) = [qm(1)^2-qm(2)^2-qm(3)^2+qm(4)^2

2*(qm(1)*qm(2)+qm(3)*qm(4)) 2*(qm(1)*qm(3)-qm(2)*qm(4))];
 A(2,:) = [2*(qm(1)*qm(2)-qm(3)*qm(4)) -qm(1)^2+qm(2)^2-

qm(3)^2+qm(4)^2 2*(qm(2)*qm(3)+qm(1)*qm(4))];
 A(3,:) = [2*(qm(1)*qm(3)+qm(2)*qm(4)) 2*(qm(2)*qm(3)-qm(1)*qm(4)) -

qm(1)^2-qm(2)^2+qm(3)^2+qm(4)^2];
 iter = iter+1;
 if iter == 10 tfin, else, end % Signal if convergence failure
 end
 tfin = tfin + dt;
end

Q_2_Carti.m

function [xTemp,yTemp,zTemp] = Q_2_Carti(qm)
% this function will receive a quaternion and convert it back to Cartesian

x,y,z coordinate
 xTemp(1,:) = [qm(1)^2-qm(2)^2-qm(3)^2+qm(4)^2

2*(qm(1)*qm(2)+qm(3)*qm(4)) 2*(qm(1)*qm(3)-qm(2)*qm(4))];
 yTemp(1,:) = [2*(qm(1)*qm(2)-qm(3)*qm(4)) -qm(1)^2+qm(2)^2-

qm(3)^2+qm(4)^2 2*(qm(2)*qm(3)+qm(1)*qm(4))];
 zTemp(1,:) = [2*(qm(1)*qm(3)+qm(2)*qm(4)) 2*(qm(2)*qm(3)-qm(1)*qm(4)) -

qm(1)^2-qm(2)^2+qm(3)^2+qm(4)^2];
end

71

LaDetum_GraphcaDisplay3_CountDown.m

nn = 29991;
step = floor(nn/12);

filename = 'Detum_GraphicalData.txt';
fid = fopen(filename,'W');

filename2 = 'Detum_ShortGraphicalData.txt';
fid2 = fopen(filename2,'W');

filename3 = 'Detum_SmoothGraphicalData.txt';
fid3 = fopen(filename3,'W');

ii = 0;
PreY = NaN;
PreP = NaN;
PreR = NaN;
SmoothCount = 0;
Hour = int32(3600);
Minit = int32(60);

for jj = 1:nn
 pitch = asin(2*(q(jj,2)*q(jj,4)-q(jj,1)*q(jj,3)));
 roll = atan3((2*(q(jj,1)*q(jj,2)+q(jj,3)*q(jj,4)))/cos(pitch),(1-

2*(q(jj,2)*q(jj,2)+q(jj,3)*q(jj,3)))/cos(pitch));
 yaw = atan3((1-

2*(q(jj,1)*q(jj,1)+q(jj,2)*q(jj,2)))/cos(pitch),(2*(q(jj,2)*q(jj,3)+q(jj,1)

*q(jj,4)))/(cos(pitch)));

 if yaw*180/pi<0
 Yp = yaw*180/pi+360;
 else
 Yp = yaw*180/pi;
 end

 if pitch*180/pi<0
 Pp = pitch*180/pi+360;
 else
 Pp = pitch*180/pi;
 end

 if roll*180/pi<0
 Rp = roll*180/pi+360;
 else
 Rp = roll*180/pi;
 end

 Yp=round(Yp);
 Pp=round(Pp);
 Rp=round(Rp);

 hour = idivide(nn-jj,Hour);
 minit = idivide(nn-jj-hour*3600,Minit);
 secound = nn-jj-hour*3600-minit*60;

 %getting the number to the desired string to print on to the file
 file_string = Detum_nums2str2(Yp,Pp,Rp,hour,minit,secound);

72

 fprintf(fid,file_string);
 if((jj <= (step*ii+100)) && (jj>step*ii))
 fprintf(fid2,file_string);

 if ~isnan(PreY) && ~isnan(PreP) && ~isnan(PreR)
 for SmoothCount = 0:10
 ratio = SmoothCount/10;
 num1 = PreY*(1-ratio)+ratio*Yp;
 num2 = PreP*(1-ratio)+ratio*Pp;
 num3 = PreR*(1-ratio)+ratio*Rp;
 if num1>360
 num1 = num1-360;
 end
 if num2>360
 num2 = num2-360;
 end
 if num3>360
 num3 = num3-360;
 end
 num1 = round(num1);
 num2 = round(num2);
 num3 = round(num3);
 file_string2 = Detum_nums2str(num1, num2, num3);
 fprintf(fid3,file_string2);
 end
 end
 PreY = Yp;
 PreP = Pp;
 PreR = Rp;
 elseif(jj == (step*ii+101))
 ii = ii+1;
 end
end

fclose(fid);
fclose(fid2);
fclose(fid3);

Detum_num2str2.m

function String_4_file = Detum_nums2str2(num1,num2,num3,num4,num5,num6)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
 number_length = zeros(1,6);
 number_length(1,1) = numel(num2str(num1));
 number_length(1,2) = numel(num2str(num2));
 number_length(1,3) = numel(num2str(num3));
 number_length(1,4) = numel(num2str(num4));
 number_length(1,5) = numel(num2str(num5));
 number_length(1,6) = numel(num2str(num6));
% temp_data(1,1)=Yp;
% temp_data(1,2)=Pp;
% temp_data(1,3)=Rp;
 num_str1 = blanks(6);
 num_str2 = blanks(6);
 num_str3 = blanks(6);
 num_str4 = blanks(6);

73

 num_str5 = blanks(6);
 num_str6 = blanks(6);
 num_str1(6-number_length(1,1)+1:6) = num2str(num1);
 num_str1 = strcat(num_str1,'\t');
 num_str2(6-number_length(1,2)+1:6) = num2str(num2);
 num_str2 = strcat(num_str2,'\t');
 num_str3(6-number_length(1,3)+1:6) = num2str(num3);
 num_str3 = strcat(num_str3,'\t');
 num_str4(6-number_length(1,4)+1:6) = num2str(num4);
 num_str4 = strcat(num_str4,'\t');
 num_str5(6-number_length(1,5)+1:6) = num2str(num5);
 num_str5 = strcat(num_str5,'\t');
 num_str6(6-number_length(1,6)+1:6) = num2str(num6);
 num_str6 = strcat(num_str6,'\r\n');

 String_4_file =

strcat(num_str1,num_str2,num_str3,num_str4,num_str5,num_str6);

end

La_DetumControll.c

include <stdio.h>
include <math.h>
define pi 3.141592653589793
#include "coils.h"
int main(){

 int ActionStep = 0;
 float MagSen[3][3];
 float MagNorm[3];
 float MagPostNorm[3][3];
 float *tempArry;
 long int ProcessTime = 0;
 long int StepTime = 1, newStepTime;
 bool ControlSystemOn = 0;

 float d21[3],d32[3];
 float Norm_d21,Norm_d32;
 float theta,alpha;
 float InstanceSpeed;//unit in rad/second
 float StepAngle = pi/10;//unit in rad
 float TorqueK = 0;

 float ActuateMoment[3];
 float CoilX;
 float CoilY;
 float CoilZ;
 coilSwitch pcs[MAX_STATES];
 int CoilStates = 0;

 while(true){
 //step 1, take magnetometer reading
 if(ActionStep == 0 && mills()-ProcessTime>StepTime){//need to
know the real-time here (assumed function call "mills()")
 ProcessTime = mills();//keep track of what is the
time now (update the thing)
 tempArry = ReadMag();//need to get the reading from
the magnetometer here
 MagSen[0][0] = tempArray->0;
 MagSen[0][1] = tempArray->1;

74

 MagSen[0][2] = tempArray->2;
 //normalize the reading
 MagNorm[0] =
norm(MagSen[0,0],MagSen[0,1],MagSen[0,2]);//require meth function "norm()"

 MagPostNorm[0][0] = MagSen[0][0]/MagNorm[0];
 MagPostNorm[0][1] = MagSen[0][1]/MagNorm[0];
 MagPostNorm[0][2] = MagSen[0][2]/MagNorm[0];
 ActionStep = 1;//increment to next step
 }
 if(ActionStep == 1 && mills()-ProcessTime>StepTime){//need to
know the real-time here (assumed function call "mills()")
 ProcessTime = mills();//keep track of what is the
time now (update the thing)
 tempArry = ReadMag();//need to get the reading from
the magnetometer here
 MagSen[1][0] = tempArray->0;
 MagSen[1][1] = tempArray->1;
 MagSen[1][2] = tempArray->2;
 //normalize the reading
 MagNorm[1] =
norm(MagSen[1,0],MagSen[1,1],MagSen[1,2]);//require meth function "norm()"

 MagPostNorm[1][0] = MagSen[1][0]/MagNorm[1];
 MagPostNorm[1][1] = MagSen[1][1]/MagNorm[1];
 MagPostNorm[1][2] = MagSen[1][2]/MagNorm[1];
 ActionStep = 2;//increment to next step
 }
 if(ActionStep == 2 && mills()-ProcessTime>StepTime){//need to
know the real-time here (assumed function call "mills()")
 ProcessTime = mills();//keep track of what is the
time now (update the thing)
 tempArry = ReadMag();//need to get the reading from
the magnetometer here
 MagSen[2][0] = tempArray->0;
 MagSen[2][1] = tempArray->1;
 MagSen[2][2] = tempArray->2;
 //normalize the reading
 MagNorm[2] =
norm(MagSen[2,0],MagSen[2,1],MagSen[2,2]);//require math function "norm()"

 MagPostNorm[2][0] = MagSen[2][0]/MagNorm[2];
 MagPostNorm[2][1] = MagSen[2][1]/MagNorm[2];
 MagPostNorm[2][2] = MagSen[2][2]/MagNorm[2];
 ActionStep = 3;//increment to next step
 }
 //preform calculation right after 3 data points are collected
 if(ActionStep == 3){
 d21[0] = MagPostNorm[1][0] - MagPostNorm[0][0];
 d21[1] = MagPostNorm[1][1] - MagPostNorm[0][1];
 d21[2] = MagPostNorm[1][2] - MagPostNorm[0][2];

 d32[0] = MagPostNorm[2][0] - MagPostNorm[1][0];
 d32[1] = MagPostNorm[2][1] - MagPostNorm[1][1];
 d32[2] = MagPostNorm[2][2] - MagPostNorm[1][2];

 Norm_d21 = norm(d21[0],d21[1],d21[2]);//required
norm()
 Norm_d32 = norm(d32[0],d32[1],d32[2]);

 theta =
acos(dot(&d21,&d32)/(Norm_d21*Norm_d32));//required dot() and acos() functions

75

 alpha =
asin(((Norm_d21+Norm_d32)/4)/sin(theta/2));//required sin() and asin() functions

 InstanceSpeed = theta/StepTime;

 //adjust the step time
 newStepTime = StepAngle/InstanceSpeed;

 if(InstanceSpeed<0.01){//is the satellite stable
enough yet?
 ControlSystemOn = 0;
 ActionStep = 0;
 break;//break out of the while(true)
loop
 }else{
 ControlSystemOn = 1;
 }
 if(alpha>1.3963){//is it a optimum angle?
 if(ControlSystemOn == 1){
 if(InstanceSpeed<0.05){
 TorqueK = 0.8;
 }

 else if(InstanceSpeed<1.2){
 TorqueK = 1.554;
 }
 ActionStep = 4;
 }
 }else{
 ControlSystemOn = 0;//turn off
the control system if it is not an optimum angle
 ActionStep = 0;
 }

 }
 if(ActionStep == 4 && mills()-ProcessTime>StepTime){
 ProcessTime = mills();//keep track of what is the
time now (update the thing)
 ActuateMoment[0] = TorqueK*MagPostNorm[1][0];
 ActuateMoment[1] = TorqueK*MagPostNorm[1][1];
 ActuateMoment[2] = TorqueK*MagPostNorm[1][2];
 CoilX = ActuateMoment[0]*StepTime*1000.0/1.554;
 CoilY = ActuateMoment[1]*StepTime*1000.0/1.554;
 CoilZ = ActuateMoment[2]*StepTime*1000.0/1.554;
 CoilStates = 0;
 if(CoilX > 0){
 pcs[CoilStates].coils = IO2_COIL_XP;
 pcs[CoilStates++].msec = CoilX;
 CoilStates++;
 }else if(CoilX < 0){
 pcs[CoilStates].coils = IO2_COIL_XN;
 pcs[CoilStates++].msec = CoilX;
 CoilStates++;
 }
 if(CoilY > 0){
 pcs[CoilStates].coils = IO2_COIL_YP;
 pcs[CoilStates++].msec = CoilY;
 CoilStates++;
 }else if(CoilY < 0){
 pcs[CoilStates].coils = IO2_COIL_YN;
 pcs[CoilStates++].msec = CoilY;
 CoilStates++;

76

 }
 if(CoilZ > 0){
 pcs[CoilStates].coils = IO2_COIL_ZP;
 pcs[CoilStates++].msec = CoilZ;
 CoilStates++;
 }else if(CoilZ < 0){
 pcs[CoilStates].coils = IO2_COIL_ZN;
 pcs[CoilStates++].msec = CoilZ;
 CoilStates++;
 }
 powerAdacCoils(pcs,CoilStates);
 //ActuateCoils(&ActuateMoment);//required the
function ActuateCoils() to actuate the coils
 ActionStep = 5;
 }
 if(ActionStep == 5 && mills()-ProcessTime>StepTime){
 ProcessTime = mills();//keep track of what is the
time now (update the thing)
 ActuateMoment[0] = TorqueK*MagPostNorm[1][0];
 ActuateMoment[1] = TorqueK*MagPostNorm[1][1];
 ActuateMoment[2] = TorqueK*MagPostNorm[1][2];
 CoilX = ActuateMoment[0]*StepTime*1000.0/1.554;
 CoilY = ActuateMoment[1]*StepTime*1000.0/1.554;
 CoilZ = ActuateMoment[2]*StepTime*1000.0/1.554;
 CoilStates = 0;
 if(CoilX > 0){
 pcs[CoilStates].coils = IO2_COIL_XP;
 pcs[CoilStates++].msec = CoilX;
 CoilStates++;
 }else if(CoilX < 0){
 pcs[CoilStates].coils = IO2_COIL_XN;
 pcs[CoilStates++].msec = CoilX;
 CoilStates++;
 }
 if(CoilY > 0){
 pcs[CoilStates].coils = IO2_COIL_YP;
 pcs[CoilStates++].msec = CoilY;
 CoilStates++;
 }else if(CoilY < 0){
 pcs[CoilStates].coils = IO2_COIL_YN;
 pcs[CoilStates++].msec = CoilY;
 CoilStates++;
 }
 if(CoilZ > 0){
 pcs[CoilStates].coils = IO2_COIL_ZP;
 pcs[CoilStates++].msec = CoilZ;
 CoilStates++;
 }else if(CoilZ < 0){
 pcs[CoilStates].coils = IO2_COIL_ZN;
 pcs[CoilStates++].msec = CoilZ;
 CoilStates++;
 }
 powerAdacCoils(pcs,CoilStates);
 //ActuateCoils(&ActuateMoment);//required the
function ActuateCoils() to actuate the coils
 ActionStep = 6;
 }
 if(ActionStep == 6 && mills()-ProcessTime>2*StepTime){
 ProcessTime = mills();//keep track of what is the
time now (update the thing)
 //ActuateMoment[0] = 0;
 //ActuateMoment[1] = 0;

77

 //ActuateMoment[2] = 0;
 CoilStates = 0;
 pcs[CoilStates].coils = 0;
 pcs[CoilStates++].msec = 0;
 powerAdacCoils(pcs,CoilStates);
 //ActuateCoils(&ActuateMoment);//required the
function ActuateCoils() to actuate the coils

 StepTime = newStepTime;//renew the StepTime based
on "updated" speed measurement
 ActionStep = 0;
 }

 }
}

